ON RELATIVE RIGHT-EQUIVALENCE OF HOLOMORPHIC FUNCTION-GERMS

M. S. J. Al-Bahadeli

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq.

m.s.jbara@gmail.com

ABSTRACT: In this paper, we find the necessary and sufficient condition of holomorphic map-germs under $\Theta^{\mathcal{R}}$ -equivalence (relative right-equivalence) where Θ is the module of holomorphic vector fields on (\mathbb{C}^n , 0). Also, we give some results on finite relative determinacy and relative stability.

Keywords: relative right-equivalence, tangent vector field, map-germ.

1. INTRODUCTION

One of the central problems in singularity theory is the classification of function-germs up to changes of coordinates in the source preserving a sub-germ. Since 1970's, Arnol'd, Bruce and many others have made significant progress in the study of this type of equivalence relations. (See for examples [1, 2, 3, 4, 5].

In [6], we introduce a new version of equivalence relation of holomorphic function-germs which called $\Theta^{\mathcal{R}}$ -equivalence where Θ is the module of holomorphic vector fields on $(\mathbb{C}^n, 0)$ such that every vector field in Θ can be integrated to give a deffeomorphism. When Θ is the module of all vector fields on $(\mathbb{C}^n, 0)$. Then $\Theta^{\mathcal{R}}$ -equivalence is just the standard right-equivalence (\mathcal{R} -equivalence). In addition, $\Theta^{\mathcal{R}}$ equivalence is just $v^{\mathcal{R}}$ -equivalence when Θ is the module of vector fields tangent to a variety $V \subseteq \mathbb{C}^n$.

In the present paper, we give more results of $\Theta^{\mathcal{R}}$ -equivalence as criterion for holomorphic function-germs, relative finite determinacy and relative stability.

2. PRELIMINARIES

In this section, we give some basic notation and preliminary results which will be used throughout this paper, for more details see [7], [8] and [9]. Let \mathcal{O}_n be the local ring of all holomorphic function-germs $(\mathfrak{C}^n, 0) \to \mathfrak{C}$. This ring contains a unique maximal ideal, denoted by $\mathfrak{M}_n = \{f \in \mathcal{O}_n | f(0) = 0\}$. We denote by \mathcal{O}_n^p the set of all holomorphic map-germs $(\mathfrak{C}^n, 0) \to (\mathfrak{C}^n, 0)$. We put $\mathcal{O}_n^0 = \mathfrak{M}_n \mathcal{O}_n^1$. The group of all automorphisms $(\mathfrak{C}^n, 0) \to (\mathfrak{C}^n, 0)$ is denoted $\operatorname{Aut}(\mathfrak{C}^n, 0)$. Any map-germ $\varphi: (\mathfrak{C}^n, 0) \to (\mathfrak{C}^n, 0)$ induces a ring homomorphism $\varphi^*: \mathcal{O}_n^n \to \mathcal{O}_n^n$ by $\varphi^*(h) = h\phi$.

If $f \in \mathcal{O}_n$, then $j^k f$ will denote the Taylor expansion up to degree k of f at the origin. The set of all k- jets forms a vector space $J^k(n, 1) = \frac{\mathcal{O}_n^0}{\mathfrak{M}_n^{k+1}}$ and $\pi_k: \mathcal{O}_n \to J^k(n, 1)$ is the canonical mapping which assigns $j^k f$ to each f. Given $k, p \in \mathbb{N}$ with $k \ge p$, we denote by $\pi_{k,p}: J^k(n, 1) \to J^p(n, 1)$ the natural linear projection of $J^k(n, 1)$ to $J^p(n, 1)$.

Lemma 2.1: [7, Nakayama's lemma]

Let *R* be a commutative ring, *M* an ideal such that for $x \in M$, 1 + x is a unit. Let *C* be an *R*-module, *A* and *B* be *R*-modules of *C* with *A* finitely generated. If $A \subset B + M.A$, $A \subset B$.

Lemma 2.2: [7, Mather's lemma]

Let the Lie group G act smoothly on the manifold M, and suppose that the connected submanifold S satisfies:

i. for all $x \in S$, $T_x S \subset T_x G. x$,

ii. the dimension of G.x is independent of the choice of $x \in S$.

Then S is contained in a single G orbit.

Theorem 2.3: [8]

Let $\Phi: G \times M \to M$ be a smooth action of a Lie group G on a smooth manifold M. It is assumed that all the orbits are smooth submanifolds of M. For any point $x \in M$ the natural mapping $\Phi_x: G \to G.x$ of the group onto the orbit given by $g \to g.x$ is a submersion and the tangent space $T_xG.x$ is the image under the differential $d\Phi_x: TG_{Id_M} \to T_xM$, i.e., $T_xG.x = d\Phi_x(TG_{Id_M})$.

Theorem 2.4: [9, Artin Approximation Theorem]

Let $f(x, y) = (f_1(x, y), ..., f_N(x, y)) \in \mathcal{C}\{x, y\}^N$, where $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_N)$. Suppose that for each $k \in \mathbb{N}$ there exist $y_{k,1}, ..., y_{k,N} \in \mathfrak{M}_n$ such that $f(x, y_k(x)) \in \mathfrak{M}_n^{k+1}$, for each *i*. Then for any $c \in \mathbb{N}$ there exist $y_1, ..., y_N \in \mathfrak{M}_n$ such that $f(x, y_i(x)) = 0$ and for all λ , we have

$y_{k,v}(x) - y_v(x) \in \mathfrak{M}_n^c$. **3.** $\Theta^{\mathcal{R}}$ -EQUIVALENCE OF FUNCTION-GERMS

In this section, we give the definition of $\Theta^{\mathcal{R}}$ -equivalence on \mathcal{O}_n^0 and $J^k(n, 1)$.

Definition 3.1:

Let Θ be a module of vector fields on ($(\mathbb{C}^n, 0)$). Then

- i. We define
- ii. $\Theta^{\mathcal{R}} = \{\varphi \in \operatorname{Aut}(\mathbb{Q}^n, 0) | \exists \xi \in \Theta \text{ that can be integrated to give } \varphi\}.$
- iii. For each non-negative integer, we define $\Theta^{\mathcal{R}^k} = \{ j^k \varphi \mid \varphi \in \Theta^{\mathcal{R}} \}$

Definition 3.2:[6]

Suppose that $f, \tilde{f}: (\mathfrak{C}^n, 0) \to (\mathfrak{C}, 0)$ are holomorphic function-germs. Let Θ be a module of vector fields on $(\mathfrak{C}^n, 0)$.

- i. We say that f and \tilde{f} are $\Theta^{\mathcal{R}}$ -equivalent (or relative right-equivalent), in short $f \sim_{\Theta^{\mathcal{R}}} \tilde{f}$, if there exists $\in \Theta^{\mathcal{R}}$ such that $\tilde{f} = f \circ \varphi$.
- ii. We say that $j^k f$ and $j^k \tilde{f}$ are $\Theta^{\mathcal{R}^k}$ -equivalent, in short $f \sim_{\Theta^{\mathcal{R}}}^k \tilde{f}$, if there exists $\varphi^k \in \Theta^{\mathcal{R}^k}$ such that $j^k \tilde{f} = j^k f \circ \varphi^k$.

Theorem 3.3:

Suppose that $f, \tilde{f}: (\mathfrak{C}^n, 0) \to (\mathfrak{C}, 0)$ are holomorphic function-germs. Let Θ be a module of vector fields on $(\mathfrak{C}^n, 0)$. Then $f \sim_{\Theta^{\mathcal{R}}}^k \tilde{f}$ if and only if there is some $g \in \mathfrak{M}_n^{k+1}$ such that $f \sim_{\Theta^{\mathcal{R}}} (\tilde{f} - g)$.

Proof.

$$\begin{split} f \sim_{\Theta^{\mathcal{R}}}^{k} \tilde{f} &\Leftrightarrow j^{k} \tilde{f} = j^{k} f \circ \varphi^{k} \\ &\Leftrightarrow j^{k} \tilde{f} = j^{k} f \circ j^{k} \varphi \\ &\Leftrightarrow j^{k} \tilde{f} - j^{k} f \circ j^{k} \varphi = 0 \\ &\Leftrightarrow j^{k} (\tilde{f} - f \circ \varphi) = 0 \\ &\Leftrightarrow \tilde{f} - f \circ \varphi \in \mathfrak{M}_{n}^{k+1} \\ &\Leftrightarrow \tilde{f} - f \circ \varphi = g, g \in \mathfrak{M}_{n}^{k+1} \\ &\Leftrightarrow \tilde{f} - g = f \circ \varphi, g \in \mathfrak{M}_{n}^{k+1} \\ &\Leftrightarrow f \sim_{\Theta^{\mathcal{R}}} (\tilde{f} - g). \end{split}$$

Definition 3.4:[6]

Let $f: (\mathfrak{C}^n, 0) \to (\mathfrak{C}, 0)$ be a holomorphic function-germ and let Θ be a module of vector fields on $(\mathfrak{C}^n, 0)$.

(1) The extended $\Theta^{\mathcal{R}}$ -tangent space, denoted by $T_{\Theta^{\mathcal{R}}e}(h)$, is the submodule of \mathcal{O}_n given by

$$T_{\Theta^{\mathcal{R}_e}}(f) = <\xi(f)|\xi\in\Theta>.$$

We also call the Jacobian of f with respect to Θ , denoted by $\mathbf{J}_{\Theta}(f)$.

(2) The $\Theta^{\mathcal{R}}$ -tangent space, denoted by $T_{\Theta^{\mathcal{R}}}(f)$, is the submodule of \mathcal{O}_n given by

 $T_{\Theta^{\mathcal{R}}}(f) = \langle \xi(f) | \xi \in \Theta \cap \mathfrak{M}_{n} \mathcal{O}_{n}^{n} \rangle.$

(3) The $\Theta^{\mathcal{R}_e}$ -codimension of f, is defined by

$$\Theta^{\mathcal{R}_e} - cod(f) = \dim_{\mathbb{C}} \frac{\mathcal{O}_n}{T_{\Theta^{\mathcal{R}_e}}(f)}.$$

Remark 3.5:

- (1) If all elements of Θ vanish at the origin, then $T_{\Theta^{\mathcal{R}}}(f) = T_{\Theta^{\mathcal{R}e}}(f)$.
- (2) Suppose that Θ is the set of all vector fields on (\$\mathbb{C}^n\$, 0). Then Θ^{\mathcal{R}}-equivalence is just the standard right-equivalence (\$\mathcal{R}\$-equivalence). For more details see [8].

4. AN ALGEBRAIC CRITERION OF $\Theta^{\mathcal{R}}$ -EQUIVALENCE. Definition 4.1:

Suppose that $f, \tilde{f}: (\mathfrak{C}^n, 0) \to (\mathfrak{C}, 0)$ are holomorphic function-germs. Let Θ be a module of vector fields on $(\mathfrak{C}^n, 0)$. We say that the tangent spaces $T_{\Theta^{\mathcal{R}}}(f)$ and $T_{\Theta^{\mathcal{R}}}(\tilde{f})$ are $\Theta^{\mathcal{R}}$ -equivalent, denoted by $T_{\Theta^{\mathcal{R}}}(f) \cong T_{\Theta^{\mathcal{R}}}(\tilde{f})$ if there

Lemma 4.2:

Let Θ be a module of vector fields on $(\mathbb{C}^n, 0)$. Then $T_{Id} \Theta^{\mathcal{R}^k} = \pi_k (\Theta \cap \mathfrak{M}_n \mathcal{O}_n^n).$

Proof.

Let $\eta \in \pi_k(\Theta \cap \mathfrak{M}_n \mathcal{O}_n^n)$. Then $\eta = j^k \xi$ with $\xi = \sum_{i=1}^n \xi_i \frac{\partial}{\partial x_i} \in \Theta \cap \mathfrak{M}_n \mathcal{O}_n^n$. Consider the one-parameter family φ_t of ξ , it is clear that $\varphi_0 = Id$, $\varphi_t \in \Theta^{\mathcal{R}}$ and $\frac{\partial \varphi_t}{\partial t}(x) = \xi(\varphi_t(x))$. We define

$$\alpha(t) = j^k \varphi_t(x) \colon (-\varepsilon, \varepsilon) \longrightarrow \Theta^{\mathcal{R}^k}.$$

Then we can see that $\alpha(0) = Id$ and

$$\dot{\alpha}(0) = \frac{a}{dt} [j^k \varphi_t(x)]_{|t=0}$$
$$= j^k \left[\frac{\partial \varphi_t}{\partial t}(x) \right]_{|t=0}$$
$$= j^k \xi$$
$$= \eta \in T_{td} \Theta^{\mathcal{R}^k}$$

Conversely, given $\xi = \sum_{i=1}^{n} \xi_i \frac{\partial}{\partial x_i} \in T_{Id} \Theta^{\mathcal{R}^k}$. Then there exists $\alpha(t): (-\varepsilon, \varepsilon) \to \Theta^{\mathcal{R}^k}$ with $\alpha(0) = Id$ and $\dot{\alpha}(0) = \xi$. Consider $\varphi_t(x) = \alpha(t)(x) = x + t\xi(x)$. Then $\varphi_t(x) \in \Theta^{\mathcal{R}^k}$ and it follows

$$\xi \in \pi_k(\Theta \cap \mathfrak{M}_n \mathcal{O}_n^n).$$

Lemma 4.3:

Let $f: (\mathbb{Q}^n, 0) \to (\mathbb{Q}, 0)$ be a holomorphic function-germ and let Θ be a module of vector fields on $(\mathbb{Q}^n, 0)$. Then the tangent space $T_{\Theta^{\mathcal{R}^k}}(f)$ to the $\Theta^{\mathcal{R}^k}$ -orbit of $j^k f$ at the point $j^k f \in J^k(n, 1)$ is given by $\pi_k^{-1}(T_{\Theta^{\mathcal{R}^k}}(f)) = T_{\Theta^{\mathcal{R}}}(f) + \mathfrak{M}_n^{k+1}$.

Proof.

From Lemma we have $T_{Id} \Theta^{\mathcal{R}^k} = \pi_k (\Theta \cap \mathfrak{M}_n \mathcal{O}_n^n)$. Let $\eta \in T_{Id} \Theta^{\mathcal{R}^k}$ be a tangent vector, $\eta = j^k \xi$ with $\xi = \sum_{i=1}^n \xi_i \frac{\partial}{\partial x_i} \in \Theta \cap \mathfrak{M}_n \mathcal{O}_n^n$. For $\in \mathbb{R}$, we define $\delta_t = Id + t\xi$. If we consider $\pi_k \circ \delta_t : (-\varepsilon, \varepsilon) \to \Theta^{\mathcal{R}^k}$. Then

$$T_{\Theta^{\mathcal{R}^{k}}}(f) = d\Phi_{j^{k}f} \left(T_{Id} \Theta^{\mathcal{R}^{k}} \right)$$

= $\frac{d}{dt} [\pi_{k}(f \circ \delta_{t})]_{|t=0}$
= $\pi_{k} \left[\frac{d}{dt} (f \circ \delta_{t}) \right]_{|t=0}$
= $\pi_{k} \left[\sum_{i=1}^{n} \frac{\partial_{f}}{\partial x_{i}} (\delta_{t}) \frac{\partial (\delta_{t})_{i}}{\partial t} (x) \right]_{|t=0}$

Sci.Int.(Lahore),28(4),3299-3303,2016

$$= \pi_k \left[\sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) \xi_i(x) \right]$$
$$= \pi_k [T_{\Theta^{\mathcal{R}}}(f)].$$

Hence,

 ${\pi_k}^{-1}(T_{\Theta^{\mathcal{R}^k}}(f)) = T_{\Theta^{\mathcal{R}}}(f) + \mathfrak{M}_n^{k+1}.$

Theorem 4.4:

Suppose that $f, \tilde{f}: (\mathfrak{C}^n, 0) \to (\mathfrak{C}, 0)$ are holomorphic function-germs. Let Θ be a finitely generated \mathcal{O}_n -module of vector fields on $(\mathfrak{C}^n, 0)$. If $f \sim_{\Theta^{\mathcal{R}}}^k \tilde{f}$ for each non-negative integer k, then $f \sim_{\Theta^{\mathcal{R}}} \tilde{f}$.

Proof.

For each non-negative integer k, we have $f \sim_{\Theta^{\mathcal{R}}}^{k} \tilde{f}$. Thais means, there exist (ξ^{k}, φ^{k}) such that

$$\tilde{f}(x) - f(\varphi^{k}(x)) \in \mathfrak{M}_{n}^{k+1},$$
$$\frac{\partial \varphi^{k}}{\partial t}(x) - \xi^{k}(\varphi^{k}(x)) \in \mathfrak{M}_{n}^{k+1}.$$

Then by using Artin approximation theorem, the above system has a convergent solution (ξ, φ) such that $\tilde{f}(x) - f(\varphi(x)) = 0$,

$$\frac{\partial \varphi}{\partial t}(x) - \xi \big(\varphi(x) \big) = 0.$$

In addition, we have $\varphi(x) - \varphi^k(x) \in \mathfrak{M}_n^2$. It follows $\varphi \in \operatorname{Aut}(\mathbb{C}^n, 0)$.

Theorem 4.5:

Suppose that $f, \tilde{f}: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ are holomorphic function-germs. Let Θ be a finitely generated \mathcal{O}_n -module of vector fields on $(\mathbb{C}^n, 0)$. If $j^k f - j^k \tilde{f} \in T_{\Theta^{\mathcal{R}^k}}(f) \cong$ $T_{\Theta^{\mathcal{R}^k}}(\tilde{f})$, then $f \sim_{\Theta^{\mathcal{R}}}^k \tilde{f}$.

Proof.

Suppose that $F_t(x) = f(x) - t(f(x) - \tilde{f}(x))$. Then we can see that $F_0 = f$ and $F_1 = \tilde{f}$.

For all $t \in \mathcal{C}$, $T_{\Theta^{\mathcal{R}^k}}(F_t)$ is a finitely generated submodule of \mathcal{O}_n with a system of generators $m_1(t), \dots, m_r(t)$ and $m_i(t) = \sum_{j=1}^r a_{ij}(t) m_j(0)$. Let $A(t) = [a_{ij}(t)]$, then up to a finite number of values that are the zeros of $\det(A(t)), A(t)$ is an invertible matrix and for every point $t \in U = \mathcal{C} - \{t_1, \dots, t_s\}$ we have $T_{\Theta^{\mathcal{R}^k}}(F_t) \cong T_{\Theta^{\mathcal{R}^k}}(\tilde{f})$.

Now we need to use Mather's lemma.

(i) we can see that U is open and connected in \mathcal{C} . Hence, $\Omega_{U} = \{j^{k}F_{t} \in J^{k}(n, 1) | t \in U\}$ is open and connected submanifold in $J^{k}(n, 1)$ and then $\dim T_{\Theta^{\mathcal{R}^{k}}}(F_{t})$ is independent of the choice of $j^{k}F_{t} \in \Omega_{U}$.

we can see that
$$j^k f - j^k \tilde{f} \in T_{\Theta^{\mathcal{R}^k}}(f) \cong T_{\Theta^{\mathcal{R}^k}}(F_t)$$
 for all $j^k F_t \in \Omega_U$. Therefore, we have
that $T_t \Omega_U \subseteq T_{\Theta^{\mathcal{R}^k}}(F_t)$ for all $j^k F_t \in \Omega_U$.

The hypotheses of Mather's lemma are satisfied and then Ω_{U} is contained in a single $\Theta^{\mathcal{R}^k}$ -orbit. Hence $f \sim_{\Theta^{\mathcal{R}}}^k \tilde{f}$.

Theorem 4.6:

(ii)

Suppose that $f, \tilde{f}: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ are holomorphic function-germs with $f - \tilde{f} \in T_{\Theta^{\mathcal{R}}}(f)$. Let Θ be a finitely generated \mathcal{O}_n -module of vector fields on $(\mathbb{C}^n, 0)$. Then f and \tilde{f} are $\Theta^{\mathcal{R}}$ -equivalent if and only if $T_{\Theta^{\mathcal{R}}}(f) \cong T_{\Theta^{\mathcal{R}}}(\tilde{f})$.

Proof.

Suppose that f and \tilde{f} are $\Theta^{\mathcal{R}}$ -equivalent. Then there exists vector field $\xi \in \Theta$ that can be integrated to give a map-germ $\varphi \in \operatorname{Aut}(\mathbb{C}^n, 0)$ such that $\tilde{f} = f \circ \varphi$.

By Chain Rule we have that

$$\frac{\partial (f \circ \varphi)}{\partial x_i} = \sum_{j=1}^n \frac{\partial \varphi_i}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \circ \varphi \right)$$
$$= \left(\frac{\partial f}{\partial x_1} \circ \varphi, \dots, \frac{\partial f}{\partial x_n} \circ \varphi \right). \, \mathrm{D}\varphi,$$

where $D\varphi$ is the Jacobian matrix of φ , which is invertible since $\varphi \in \operatorname{Aut}(\mathbb{C}^n, 0)$. It follows that $T_{\Theta^{\mathcal{R}}}(f \circ \varphi) = \varphi^*(T_{\Theta^{\mathcal{R}}}(f))$, i.e., $T_{\Theta^{\mathcal{R}}}(\tilde{f}) = \varphi^*(T_{\Theta^{\mathcal{R}}}(f))$

Conversely, suppose that $T_{\Theta^{\mathcal{R}}}(f)$ and $T_{\Theta^{\mathcal{R}}}(\tilde{f})$ are $\Theta^{\mathcal{R}}$ -equivalent. Then there exists $\Phi \in \operatorname{Aut}(\mathbb{C}^n, 0)$ such that $\Phi^*(T_{\Theta^{\mathcal{R}}}(f)) = T_{\Theta^{\mathcal{R}}}(\tilde{f})$.

By replacing f by $f \circ \Phi$ we may assume that $T_{\Theta^{\mathcal{R}}}(f) = T_{\Theta^{\mathcal{R}}}(\tilde{f})$ holds. For each non-negative integer k, we have $T_{\Theta^{\mathcal{R}}}(\tilde{f}) = T_{\Theta^{\mathcal{R}}}(\tilde{f})$ and from Theorem4.5 we get $f \sim_{\Theta^{\mathcal{R}}}^{k} \tilde{f}$. Then from Theorem4.4 we have that $f \sim_{\Theta^{\mathcal{R}}} \tilde{f}$.

5. RELATIVE FINITE DETERMINACY

Definition 5.1:[6]

Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be a holomorphic function-germ and let Θ be a module of vector fields on $(\mathbb{C}^n, 0)$. We say that f is $k \cdot \Theta^{\mathcal{R}}$ -determined if f is $\Theta^{\mathcal{R}}$ -equivalent to any map-germ $g: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ such that $j^k f = j^k g$. If f is $k \cdot \Theta^{\mathcal{R}}$ determined for some k, then f is said to be finitely $\Theta^{\mathcal{R}}$ determined.

Theorem 5.2:

Let p and k be non-negative integers with $k \le p$. Let $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be a holomorphic function-germ and let Θ be a module of vector fields on $(\mathbb{C}^n, 0)$. If f is $k \cdot \Theta^{\mathcal{R}}$ -determined, then $\mathfrak{M}_n^{k+1} \subseteq T_{\Theta^{\mathcal{R}}}(f) + \mathfrak{M}_n^{p+1}$.

Proof.

Let
$$\Omega = \{z \in J^p(n, 1) | \pi_{p,k}(z) = \pi_{p,k}(j^p f)\}$$
 where $\pi_{p,k}: J^p(n, 1) \to J^k(n, 1)$ the natural linear projection. We

have that Ω is an affine subspace of $J^p(n, 1)$. It follows, $T_{j^p f} \Omega = \pi_p(\mathfrak{M}_n^{k+1})$.

By hypothesis f is $k \cdot \Theta^{\mathcal{R}}$ -determined it follows Ω a subset of the $\Theta^{\mathcal{R}^p}$ -orbit of $j^p f$. Therefore, $T_{j^p f} \Omega \subset T_{\Theta^{\mathcal{R}^p}}(f)$ and this implies that

$$\mathfrak{M}_{\mathbf{n}}^{k+1} \subset \pi_p^{-1}(T_{\Theta^{\mathcal{R}^p}}(f)) = T_{\Theta^{\mathcal{R}}}(f) + \mathfrak{M}_{\mathbf{n}}^{p+1}.$$

Corollary 5.3:

Let *k* be a non-negative integer. Let $f: (\mathfrak{C}^n, 0) \to (\mathfrak{C}, 0)$ be a holomorphic function-germ and let Θ be a module of vector fields on $(\mathfrak{C}^n, 0)$. If f is $k \cdot \Theta^{\mathcal{R}}$ -determined, then $\mathfrak{M}_n^{k+1} \subseteq T_{\Theta^{\mathcal{R}}}(f)$.

Proof.

Since f is $k \cdot \Theta^{\mathcal{R}}$ -determined. Then $\pi_{k+1}(f)$ is $k \cdot \Theta^{\mathcal{R}^{k+1}}$ determined. By using Theorem 5.2 with p = k + 1, we obtain $\mathfrak{M}_n^{k+1} \subseteq T_{\Theta^{\mathcal{R}}}(f) + \mathfrak{M}_n^{k+2}$.

By Nakayama's lemma, it follows that $\mathfrak{M}_{n}^{k+1} \subseteq T_{\Theta^{\mathcal{R}}}(f).$

6. RELATIVE STABILITY

Definition 6.1:

Let $f: (\mathfrak{C}^n, 0) \to (\mathfrak{C}, 0)$ be a holomorphic function-germ and let Θ be a module of vector fields on $(\mathfrak{C}^n, 0)$. Let U be a neighbourhood of 0 in \mathfrak{C}^n with $\mathcal{O}_{\mathrm{U}}(f) = \{g \in \mathcal{O}_n | f_{|U} = g_{|U}\}$. We say that f is $\Theta^{\mathcal{R}}$ -stable if f is $\Theta^{\mathcal{R}}$ -equivalent to any function-germ $g \in \mathcal{O}_{\mathrm{U}}(f)$. In other words, if the $\Theta^{\mathcal{R}}$ -orbit of f contains $\mathcal{O}_{\mathrm{U}}(f)$.

Theorem 6.2:

Let $f: (\mathfrak{C}^n, 0) \to (\mathfrak{C}, 0)$ be a holomorphic function-germ and let $\Theta = \{\xi_j\}_{j=1}^r$ be a finitely generated \mathcal{O}_n -module of vector fields on $(\mathfrak{C}^n, 0)$. f is $\Theta^{\mathcal{R}}$ -stable if and only if $\Theta^{\mathcal{R}_e} - cod(f) = 0$.

Proof.

See the proof of Theorem 1.3 in [2]. It is only necessary to replace the tangent space E(f) by our tangent space $T_{\Theta^{\mathcal{R}_e}}(f)$.

Definition 6.3.[6]

Let $\Theta_i = \{\xi_j^i\}_{j=1}^{r_i}$ be a set of vector fields on $(\mathbb{C}^{n_i}, 0)$, i = 1,2. Then the product of Θ_1 and Θ_2 , denoted $\Theta_1 \times \Theta_2$, is the set of vector fields on $(\mathbb{C}^{n_1} \times \mathbb{C}^{n_2}, 0 \times 0)$ define by

$$\Theta_1 \times \Theta_2 = \{\xi_1^1, \dots, \xi_{r_1}^1, \xi_1^2, \dots, \xi_{r_2}^2\}.$$

Definition 6.4.[6]

Let $f:(\mathbb{C}^{n_1},0) \to (\mathbb{C},0)$ and $\tilde{f}:(\mathbb{C}^{n_2},0) \to (\mathbb{C},0)$ be holomorphic function-germs. We define the direct sum $f \oplus \tilde{f}:(\mathbb{C}^{n_1} \times \mathbb{C}^{n_2},0 \times 0) \to (\mathbb{C},0)$ by $(f \oplus \tilde{f})(x,y) = f(x) + \tilde{f}(y)$.

Theorem 6.5.

Let $\Theta_i = \{\xi_j^i\}_{j=1}^{r_i}$ be a finitely generated \mathcal{O}_n -module of vector fields on $(\mathbb{C}^{n_i}, 0)$, i = 1, 2. Let $f: (\mathbb{C}^{n_1}, 0) \to (\mathbb{C}, 0)$ and $\tilde{f}: (\mathbb{C}^{n_2}, 0) \to (\mathbb{C}, 0)$ be holomorphic function-germs. Then

 $f \oplus \tilde{f}$ is $\Theta_1 \times \Theta_2^{\mathcal{R}}$ -stable if and only if f is $\Theta_1^{\mathcal{R}}$ -stable or \tilde{f} is $\Theta_2^{\mathcal{R}}$ -stable.

Proof.

We have

$$\Theta_{1} \times \Theta_{2}^{\mathcal{R}_{e}} - cod(f \oplus \tilde{f}) = \dim_{\mathbb{C}} \frac{\mathcal{O}_{n_{1}+n_{2}}}{T_{\Theta_{1} \times \Theta_{2}}^{\mathcal{R}_{e}}(f \oplus \tilde{f})}$$
$$= \dim_{\mathbb{C}} \frac{\mathcal{O}_{n_{1}+n_{2}}}{\langle \xi(f \oplus \tilde{f}) | \xi \in (\Theta_{1} \times \Theta_{2}) \rangle}$$
$$= \dim_{\mathbb{C}} \frac{\mathcal{O}_{n_{1}+n_{2}}}{\langle \xi_{1}^{1}(f), \dots, \xi_{1}^{1}(f) | \xi_{1}^{2}(\tilde{f}), \dots, \xi_{1}^{2}(\tilde{f}) \rangle}$$

From [10], page 181, we can see that

$$\begin{array}{c} \mathcal{O}_{n_1+n_2} \\ \hline <\xi_1^1(f), \dots, \ \xi_{r_1}^1(f), \xi_1^2(\tilde{f}), \dots, \xi_{r_2}^2(\tilde{f}) > \\ \cong \frac{\mathcal{O}_{n_1}}{<\xi_1^1(f), \dots, \ \xi_{r_1}^1(f) > } \\ & \otimes \frac{\mathcal{O}_{n_2}}{\langle\xi_1^2(\tilde{f}), \dots, \xi_{r_2}^2(\tilde{f}) \rangle} \end{array}$$

It follows, we have that

$$\begin{split} \Theta_{1} \times \Theta_{2}^{\mathcal{R}_{e}} - cod(f \oplus \tilde{f}) \\ &= \dim_{\mathbb{G}} \left(\frac{\mathcal{O}_{n_{1}}}{\langle \xi_{1}^{2}(f), \dots, \xi_{r_{1}}^{1}(f) \rangle} \\ &\otimes \frac{\mathcal{O}_{n_{2}}}{\langle \xi_{1}^{2}(\tilde{f}), \dots, \xi_{r_{2}}^{2}(\tilde{f}) \rangle} \right) \\ &= \\ \dim_{\mathbb{G}} \left(\frac{\mathcal{O}_{n_{1}}}{\langle \xi_{1}^{1}(f), \dots, \xi_{r_{1}}^{1}(f) \rangle} \right) \cdot \dim_{\mathbb{G}} \left(\frac{\mathcal{O}_{n_{2}}}{\langle \xi_{1}^{2}(f), \dots, \xi_{r_{2}}^{2}(\tilde{f}) \rangle} \right) \\ &= \Theta^{\mathcal{R}_{e}} - cod(f) \cdot \Theta^{\mathcal{R}_{e}} - cod(\tilde{f}). \\ \Box \end{split}$$

REFERENCES

- Arnold's, V. I., "Wavefront evolution and equivariant Morse lemma". Comm. Pure Appl. Maths. . 29. 557-582(1976).
- Bruce, J.W. and Giblin, P.J., "Smooth stable maps of discriminant varieties". *Proc. London Math. Soc.* (3) 50. 535–551(1985).
- **3.** Bruce, J.W. and Roberts, R.M., "Critical points of functions on analytic varieties". *Topology*. **27** (no.1).57–90(1988).
- **4.** Bruce, J.W., Kirk, N.P. and du Plessis, A.A., "Complete transversals and the classification of singularities. *Nonlinearity*". **10**.19–39(1997).
- Bruce, J.W. and West, J.W., "Function on cross-caps". Math. Proc. Cambridge Philos. Soc. 123 .19–39(198).

- 6. Al-Bahadeli M.S.J. 2012. "Classification of Real and Complex Map-Germs on the Generalized Cross Cap. PhD Thesis, University of Leeds, Leeds, United Kingdom.
- 7. Wall, C.T.C., "Finite determinacy of smooth map-germs". *Bull. London. Math. Soc.* 13.481–539(1981).
- 8. Martinet, J., "Singularities of Smooth Functions and maps". London Math. Soc. Lecture Notes Ser. 58(1982). Cambridge University Press. Cambridge
- Wavrik, J.J., "A theorem of completeness for families of compact analytic spaces". *Trans. Amer. Math. Soc.* 163.147–155(1972).
- **10.** Grauert, H. and Remmert, R., "Analytische Stellenalgebren". Die Grundlehren der mathematischen Wissenschaften. 176. Springer-Verlag(1971).