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ABSTRACT: In this paper, we find the necessary and sufficient condition of holomorphic map-germs under   -equivalence 

(relative right-equivalence) where   is the module of holomorphic vector fields on       . Also, we give some results on finite relative 

determinacy and relative stability.  
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1. INTRODUCTION  

    One of the central problems in singularity theory is the 

classification of function-germs up to changes of coordinates 

in the source preserving a sub-germ. Since 1970's, Arnol'd, 

Bruce and many others have made significant progress in the 

study of this type of equivalence relations. (See for examples 

[1, 2, 3,4,5].  

In [6], we introduce a new version of equivalence relation of 

holomorphic function-germs which called   -equivalence 

where Θ is the module of holomorphic vector fields on 

       such that every vector field in Θ can be integrated to 

give a deffeomorphism. When Θ is the module of all vector 

fields on       . Then   -equivalence is just the standard 

right-equivalence ( -equivalence). In addition,   -

equivalence is just    -equivalence when Θ is the module of 

vector fields tangent to a variety     .  

   In the present paper, we give more results of   -

equivalence as criterion for holomorphic function-germs, 

relative finite determinacy and relative stability. 

2. PRELIMINARIES 
   In this section, we give some basic notation and preliminary 

results which will be used throughout this paper, for more 

details see [7], [8] and [9]. Let    be the local ring of all 

holomorphic function-germs         . This ring contains 

a unique maximal ideal, denoted by 

   {    |      }. We denote by   
 
 the set of all 

holomorphic map-germs              . We put   
  

    
 . The group of all automorphisms               is 

denoted          . Any map-germ                 
induces a ring homomorphism      

    
  by         . 

   If     , then     will denote the Taylor expansion up to 

degree   of    at the origin. The set of all  - jets forms a 

vector space         
  
 

  
    and               is the 

canonical mapping which assigns     to each  . Given 

      with    , we denote by       
               

the natural linear projection of         to        . 
 Lemma 2.1: [7, Nakayama's lemma] 

  Let    be a commutative ring,   an ideal such that for 

   ,     is a unit. Let   be an  -module,   and   be  -

modules of   with   finitely generated. If        , 

   . 

Lemma 2.2: [7, Mather's lemma] 

  Let the Lie group   act smoothly on the manifold  , and 

suppose that the connected submanifold   satisfies:  

i. for all    ,          , 

ii. the dimension of     is independent of the choice of 

   . 

Then   is contained in a single   orbit. 

Theorem 2.3: [8] 

   Let         be a smooth action of a Lie group   on 

a smooth manifold  . It is assumed that all the orbits are 

smooth submanifolds of  . For any point     the natural 

mapping          of the group onto the orbit given by 

      is a submersion and the tangent space       is the 

image under the differential              , i.e., 

                . 

Theorem 2.4: [9, Artin Approximation Theorem] 

   Let        (                 )   {   } , where 

            and            . Suppose that for each 

    there exist                such that            

  
   , for each  . Then for any     there exist         

   such that              and for all  , we have  

                
 . 

3.   -EQUIVALENCE OF FUNCTION-GERMS 

    In this section, we give the definition of   -equivalence on 

  
  and        .  

Definition 3.1: 

   Let Θ be a module of vector fields on       . Then 

i. We define  

ii.     
{           |                                      }  

iii. For each non-negative integer, we define    
 

{     |      } 

Definition 3.2:[6] 

   Suppose that    ̃              are holomorphic 

function-germs. Let Θ be a module of vector fields on 

      .  

i. We say that   and  ̃ are   -equivalent (or relative 

right-equivalent), in short       ̃, if there exists 

    such that  ̃     . 

ii. We say that      and    ̃ are    
-equivalent, in 

short   
   
  ̃, if there exists       

 such that 

    ̃         . 

Theorem 3.3: 
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   Suppose that    ̃              are holomorphic 

function-germs. Let Θ be a module of vector fields on 

      . Then   
   
  ̃ if and only if there is some     

   
 

such that        ̃    . 

Proof. 

  
   
  ̃       ̃          

                     ̃            

                     ̃              

                    ( ̃     )    

                  ̃        
   

 

                  ̃            
   

 

                  ̃            
   

 

                        ̃    .                         □ 

Definition 3.4:[6] 

   Let                be a holomorphic function-germ and 

let Θ be a module of vector fields on       .  

(1) The extended   -tangent space, denoted by 

       , is the submodule of    given by  

              |      

             We also call the Jacobian of   with respect to  , 

denoted by      . 

(2) The   -tangent space, denoted by       , is the 

submodule of    given by  

             |        
    

(3) The    -codimension of  , is defined by  

               

  

       
  

Remark 3.5:  

(1) If all elements of   vanish at the origin, then 

               . 

(2) Suppose that   is the set of all vector fields on 

      . Then   -equivalence is just the standard 

right-equivalence ( -equivalence). For more details 

see [8]. 

(3) If   is the module of tangent vector fields on a sub-

germ             , then   -equivalence is   -

equivalence. For more details see [2], [3] and [4]. 

4. AN ALGEBRAIC CRITERION OF   -

EQUIVALENCE. 

Definition 4.1: 

   Suppose that    ̃              are holomorphic 

function-germs. Let Θ be a module of vector fields on 

      . We say that the tangent spaces        and      ̃  

are   -equivalent, denoted by             ̃  if there 

exists a map-germ              such that         

        ̃  . 

Lemma 4.2: 

   Let Θ be a module of vector fields on       . Then 

    
  

          
  . 

Proof. 

Let            
  . Then       with   ∑   

 

   

 
    

      
 . Consider the one-parameter family    of  , it is 

clear that      ,       and 
   

  
            . We 

define 

                       
  

Then we can see that         and 

  ̇    
 

  
[       ]|      

             [
   

  
   ]

|   
 

               

                 
  

 

Conversely, given   ∑   
 

   

 
        

  
. Then there 

exists                
 with         and  ̇      . 

Consider                       . Then       

   
and it follows 

            
  .                                     □ 

Lemma 4.3: 

Let                be a holomorphic function-germ and 

let Θ be a module of vector fields on       . Then the 

tangent space  
       to the    

-orbit of     at the point 

            is given by   
  

    
                  

     

Proof. 

  From Lemma we have     
  

          
  . Let 

      
  

 be a tangent vector,       with   

∑   
 

   

 
          

 . For    , we define          . 

If we consider                 
. Then 

 
             (    

  
) 

                   
 

  
[        ]|    

                     [
 

  
      ]

|   
 

                     [∑
  

   

 

   

    
      
  

   ]

|   
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                     [∑
  

   

 

   

        ] 

                     [      ]  

Hence,  

  
    

                  
                   □                                                                                                                                            

Theorem 4.4: 

   Suppose that    ̃              are holomorphic 

function-germs. Let Θ be a finitely generated   -module of 

vector fields on       . If   
   
  ̃ for each non-negative 

integer  , then       ̃. 

Proof.  

For each non-negative integer  , we have   
   
  ̃. Thais 

means, there exist          such that 

 ̃     (     )    
     

   

  
      (     )    

   
. 

Then by using Artin approximation theorem, the above 

system has a convergent solution (      such that  

 ̃     (    )     

  

  
     (    )     

In addition, we have              
 
. It follows 

           .                                                □ 

Theorem 4.5: 

   Suppose that    ̃              are holomorphic 

function-germs. Let Θ be a finitely generated   -module of 

vector fields on       . If          ̃    
       

 
     ̃ , then   

   
  ̃. 

Proof. 

   Suppose that                    ̃    . Then we can 

see that       and      ̃.  

For all    ,  
        is a finitely generated submodule of 

   with a system of generators               and 

      ∑       
 
        . Let      [      ], then up to a 

finite number of values that are the zeros of          ,      
is an invertible matrix and for every point       
{       } we have  

         
     ̃ .  

Now we need to use Mather's lemma.  

(i) we can see that   is open and connected in  . 

Hence,    {            |   } is open 

and connected submanifold in         and then 

     
        is independent of the choice of 

       . 

(ii)  we can see that         ̃    
       

 
        for all        . Therefore, we have 

that       
        for all        .  

The hypotheses of Mather's lemma are satisfied and then    

is contained in a single    
-orbit. Hence   

   
  ̃.                                                             

□ 

Theorem 4.6: 

   Suppose that    ̃              are holomorphic 

function-germs with    ̃        . Let Θ be a finitely 

generated   -module of vector fields on       . Then   and 

 ̃ are   -equivalent if and only if             ̃ . 

Proof. 

    Suppose that   and  ̃ are   -equivalent. Then there exists 

vector field     that can be integrated to give a map-germ 

            such that  ̃     . 

By Chain Rule we have that 

      

   
 ∑

   

   
(
  

   
  )

 

   

 

                  (
  

   
     

  

   
  )      

     where    is the Jacobian matrix of  , which is invertible 

since             . It follows that           

  (      ), i.e.,      ̃    (      ) 

      Conversely, suppose that        and      ̃  are   -

equivalent. Then there exists             such that 

                ̃ .  

     By replacing   by     we may assume that        

     ̃  holds. For each non-negative integer  , we have 

 
        

     ̃  and from Theorem4.5 we get   
   
  ̃. 

Then from Theorem4.4 we have that       ̃.                                          

□ 

5. RELATIVE FINITE DETERMINACY 

Definition 5.1:[6] 

    Let                be a holomorphic function-germ 

and let Θ be a module of vector fields on       . We say that 

  is  -  -determined if   is   -equivalent to any map-germ 

               such that        . If   is  -  -

determined for some  , then   is said to be finitely   -

determined. 

Theorem 5.2: 

   Let   and   be non-negative integers with    . Let 

               be a holomorphic function-germ and let Θ 

be a module of vector fields on       . If   is  -  -

determined, then  

  
              

   
  

Proof. 

   Let   {         |               
   } where 

      
               the natural linear projection. We 
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have that   is an affine subspace of        . It follows, 

           
    . 

By hypothesis   is  -  -determined it follows   a subset of 

the    
-orbit of     . Therefore,        

       and this 

implies that  

  
       

    
                 

   
  

                                                                                   □                                                                                                                                  

Corollary 5.3: 

 Let    be a non-negative integer. Let                be a 

holomorphic function-germ and let Θ be a module of vector 

fields on       . If   is  -  -determined, then  
  

             
Proof. 

  Since   is  -  -determined. Then         is  -     
-

determined. By using Theorem 5.2 with      , we obtain  
  

              
     

 

By Nakayama's lemma, it follows that  
  

             
                                                                             □                                                                                                                                   

6. RELATIVE STABILITY 

Definition 6.1: 

   Let                be a holomorphic function-germ and 

let Θ be a module of vector fields on       . Let   be a 

neighbourhood of 0 in    with       {    | |   | } . 

We say that   is   -stable if   is   -equivalent to any 

function-germ        . In other words, if the   -orbit of 

  contains      . 

Theorem 6.2: 

   Let                be a holomorphic function-germ and 

let Θ={  }   
 

 be a finitely generated   -module of vector 

fields on       .   is   -stable if and only if     
        . 

Proof. 

  See the proof of Theorem 1.3 in [2]. It is only necessary to 

replace the tangent space      by our tangent space        .                                         
□ 

Definition 6.3.[6] 

   Let     {  
 }

   

  
 be a set of vector fields on        , 

     . Then the product of   and   , denoted     , is 

the set of vector fields on               define by  

      {  
       

    
       

 }. 

Definition 6.4.[6] 

   Let                 and   ̃               be 

holomorphic function-germs. We define the direct sum 

   ̃                     by     ̃       

      ̃   . 

Theorem 6.5. 

   Let    {  
 }
   

  
be a finitely generated   -module of vector 

fields on        ,      . Let                 and  

 ̃               be holomorphic function-germs. Then 

   ̃ is      
 -stable if and only if   is    

 -stable or  ̃ 

is    
 -stable. 

Proof. 

  We have 

     
      (   ̃)      

      

        (   ̃)
 

                                            =     
      

      ̃ |          
 

                                                
      

   
          

       
   ̃       

   ̃  
 

From [10], page 181, we can see that 

      

   
          

       
   ̃       

   ̃  

 
   

   
          

     

 
   

〈  
 ( ̃)      

 ( ̃)〉
 

It follows, we have that  

     
      (   ̃)

     (
   

   
          

     

 
   

〈  
 ( ̃)      

 ( ̃)〉
) 

                                = 

    (
   

   
          

     
)      (

   
〈  
 ( ̃)      

 ( ̃)〉
) 

                            =                  ( ̃).                                                   

                                                                    □ 
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